Normal Distribution and Applications

(sample MathCad lecture by Marc.Artzrouni@univ-pau.fr; February 2011)

1.Normal distribution:

The random variable (r.v.)

is called a normal

Example below: $\mu \equiv 2$, $\sigma \equiv 0.5$

simul: $si1 := rnorm(1, \mu, \sigma) = (1.66)$

>

1. Density normal distribution

Calculations done in exercise sessions:

=

which shows that the parameter

Similarly the standard deviation

and therefore .

Remarks:

- 1. The density $dnorm(x,\mu,\sigma)$ is centered
- 2. The smaller σ is,
- 3. $dnorm(x,\mu,\sigma)$ does not

2. Normal distribution as a model for heights of male and female students collected at first class (make sure path is specificed correctly to EXCEL spreadsheet read below in collapsed area; male and female heights (random variables) are TF, TM)

i. Histogram

EXCEL spreadsheet (check path, etc)

counts and heights, in cm:

$$Df = \begin{pmatrix} 1 & 1 & 2 & 10 & 6 & 2 & 1 & 0 \\ 147.5 & 152.5 & 157.5 & 162.5 & 167.5 & 172.5 & 177.5 & 182.5 & 1 \end{pmatrix}$$

 $n_f = 23$ = number of females In histogram

ii. Normal approximationMale parameters

 $\mu_{\text{fe}} =$ 164.783 $\,$; similarly : $\mu_{\text{me}} =$ 177.3

These estimators are unbiased:

b. To estimate

For calculations we need:

```
i. n_f = 23 n_m = 20
```

ii. somTF = 3790 somTM = 3546

gentlemen μ_{me} , σ_{me} (done here and now in class)

Exercise 1: We have three sampled values X_1 =0, X_2 =0, X_3 =1,of a binary rv (e.g. flipped coin). Use eq. (1) and (4) to calculate estimated values μ_e of μ and σ_e of σ . μ_e =